skip to main content


Search for: All records

Creators/Authors contains: "Bertoldi, Frank"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The formation of the first supermassive black holes is expected to have occurred in some most pronounced matter and galaxy overdensities in the early universe. We have conducted a submillimeter wavelength continuum survey of 54z∼ 6 quasars using the Submillimeter Common-User Bolometre Array-2 on the James Clerk Maxwell Telescope to study the environments aroundz∼ 6 quasars. We identified 170 submillimeter galaxies (SMGs) with above 3.5σdetections in 450 or 850μm maps. Their far-IR luminosities are (2.2–6.4) × 1012L, and their star formation rates are ∼400–1200Myr−1. We also calculated the SMGs’ differential and cumulative number counts in a combined area of ∼620 arcmin2. To a 4σdetection (at ∼5.5 mJy), SMGs’ overdensity is0.680.19+0.21(±0.19), exceeding the blank-field source counts by a factor of 1.68. We find that 13/54 quasars show overdensities (at ∼5.5 mJy) ofδSMG∼ 1.5–5.4. The combined area of these 13 quasars exceeds the blank-field counts with the overdensity to 5.5 mJy ofδSMG2.460.55+0.64(±0.25) in the regions of ∼150 arcmin2. However, the excess is insignificant on the bright end (e.g., 7.5 mJy). We also compare results with previous environmental studies of Lyαemitters and Lyman break galaxies on a similar scale. Our survey presents the first systematic study of the environment of quasars atz∼ 6. The newly discovered SMGs provide essential candidates for follow-up spectroscopic observations to test whether they reside in the same large-scale structures as the quasars and search for protoclusters at an early epoch.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Characterizing the physical conditions (density, temperature, ionization state, metallicity, etc) of the interstellar medium is critical to improving our understanding of the formation and evolution of galaxies. In this work, we present a multi-line study of the interstellar medium in the host galaxy of a quasar atz ≈ 6.4, that is, when the universe was 840 Myr old. This galaxy is one of the most active and massive objects emerging from the dark ages and therefore represents a benchmark for models of the early formation of massive galaxies. We used the Atacama Large Millimeter Array to target an ensemble of tracers of ionized, neutral, and molecular gas, namely the following fine-structure lines: [O III] 88 μm, [N II] 122 μm, [C II] 158 μm, and [C I] 370 μm – as well as the rotational transitions of CO(7–6), CO(15–14), CO(16–15), and CO(19–18); OH 163.1 μm and 163.4 μm; along with H2O 3(0,3)–2(1,2), 3(3,1)–4(0,4), 3(3,1)–3(2,2), 4(0,4)–3(1,3), and 4(3,2)–4(2,3). All the targeted fine-structure lines were detected, along with half of the targeted molecular transitions. By combining the associated line luminosities with the constraints on the dust temperature from the underlying continuum emission and predictions from photoionization models of the interstellar medium, we find that the ionized phase accounts for about one-third of the total gaseous mass budget and is responsible for half of the total [C II] emission. This phase is characterized by a high density (n ∼ 180 cm−3) that typical of HII regions. The spectral energy distribution of the photoionizing radiation is comparable to that emitted by B-type stars. Star formation also appears to be driving the excitation of the molecular medium. We find marginal evidence for outflow-related shocks in the dense molecular phase, but not in other gas phases. This study showcases the power of multi-line investigations in unveiling the properties of the star-forming medium in galaxies at cosmic dawn.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  3. We present Atacama Large Millimeter/submillimeter Array (ALMA) sub-kiloparsec- to kiloparsec-scale resolution observations of the [C II], CO (9–8), and OH+(11–01) lines along with their dust continuum emission toward the far-infrared (FIR) luminous quasar SDSS J231038.88+185519.7 atz = 6.0031, to study the interstellar medium distribution, the gas kinematics, and the quasar-host system dynamics. We decompose the intensity maps of the [C II] and CO (9–8) lines and the dust continuum with two-dimensional elliptical Sérsic models. The [C II] brightness follows a flat distribution with a Sérsic index of 0.59. The CO (9–8) line and the dust continuum can be fit with an unresolved nuclear component and an extended Sérsic component with a Sérsic index of ∼1, which may correspond to the emission from an active galactic nucleus dusty molecular torus and a quasar host galaxy, respectively. The different [C II] spatial distribution may be due to the effect of the high dust opacity, which increases the FIR background radiation on the [C II] line, especially in the galaxy center, significantly suppressing the [C II] emission profile. The dust temperature drops with distance from the center. The effective radius of the dust continuum is smaller than that of the line emission and the dust mass surface density, but is consistent with that of the star formation rate surface density. This may indicate that the dust emission is a less robust tracer of the dust and gas distribution but is a decent tracer of the obscured star formation activity. The OH+(11–01) line shows a P-Cygni profile with an absorption at ∼–400 km s−1, which may indicate an outflow with a neutral gas mass of (6.2 ± 1.2)×108Malong the line of sight. We employed a three-dimensional tilted ring model to fit the [C II] and CO (9–8) data cubes. The two lines are both rotation dominated and trace identical disk geometries and gas motions. This suggest that the [C II] and CO (9–8) gas are coplanar and corotating in this quasar host galaxy. The consistent circular velocities measured with [C II] and CO (9–8) lines indicate that these two lines trace a similar gravitational potential. We decompose the circular rotation curve measured from the kinematic model fit to the [C II] line into four matter components (black hole, stars, gas, and dark matter). The quasar-starburst system is dominated by baryonic matter inside the central few kiloparsecs. We constrain the black hole mass to be 2.97+0.51-0.77 × 109M; this is the first time that the dynamical mass of a black hole has been measured atz ∼ 6. This mass is consistent with that determined using the scaling relations from quasar emission lines. A massive stellar component (on the order of 109M) may have already existed when the Universe was only ∼0.93 Gyr old. The relations between the black hole mass and the baryonic mass of this quasar indicate that the central supermassive black hole may have formed before its host galaxy.

     
    more » « less
  4. We investigate the molecular gas content of z  ∼ 6 quasar host galaxies using the Institut de Radioastronomie Millimétrique Northern Extended Millimeter Array. We targeted the 3 mm dust continuum, and the line emission from CO(6–5), CO(7–6), and [C  I ] 2−1 in ten infrared–luminous quasars that have been previously studied in their 1 mm dust continuum and [C  II ] line emission. We detected CO(7–6) at various degrees of significance in all the targeted sources, thus doubling the number of such detections in z  ∼ 6 quasars. The 3 mm to 1 mm flux density ratios are consistent with a modified black body spectrum with a dust temperature T dust  ∼ 47 K and an optical depth τ ν  = 0.2 at the [C  II ] frequency. Our study provides us with four independent ways to estimate the molecular gas mass, M H2 , in the targeted quasars. This allows us to set constraints on various parameters used in the derivation of molecular gas mass estimates, such as the mass per luminosity ratios α CO and α [CII] , the gas-to-dust mass ratio δ g/d , and the carbon abundance [C]/H 2 . Leveraging either on the dust, CO, [C  I ], or [C  II ] emission yields mass estimates of the entire sample in the range M H2  ∼ 10 10 –10 11 M ⊙ . We compared the observed luminosities of dust, [C  II ], [C  I ], and CO(7–6) with predictions from photo-dissociation and X-ray dominated regions. We find that the former provide better model fits to our data, assuming that the bulk of the emission arises from dense ( n H  > 10 4 cm −3 ) clouds with a column density N H  ∼ 10 23 cm −2 , exposed to a radiation field with an intensity of G 0  ∼ 10 3 (in Habing units). Our analysis reiterates the presence of massive reservoirs of molecular gas fueling star formation and nuclear accretion in z  ∼ 6 quasar host galaxies. It also highlights the power of combined 3 mm and 1 mm observations for quantitative studies of the dense gas content in massive galaxies at cosmic dawn. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)